
The breadboard is the primary place you will be building circuits.

The one that comes in your kit is solderless, so named because

you don’t have to solder anything together, sort of like LEGO in

electronic form. The horizontal and vertical rows of the bread-

board, as shown in Fig. 3, carry electrictricity through thin metal

connectors under the plastic with holes.

+ -+ -

The 5 holes in each horizontal row are
connected electrically through metal
strips inside the breadboard.

The middle row breaks the
connection between the two
sides of the board.

The vertical strips that run the length
of the breadboard are electrically
connected. The strips are usually used
for power and ground connections.

Conductive metal strips.

POWER BUS POWER BUS

PROTOTYPING AREA

23

WHAT’S A
BREADBOARD?

The top of a breadboard and the connect ions
underneath.
Fig. 3

The conductive plates ins ide a breadboard.
Fig. 4

An LED, or light-emitting diode, is a component that converts electrical energy

into light energy. LEDs are polarized components, which means they only allow

electricity to flow through them in one direction. The longer leg on the LED is

called an anode, it will connect to power. The shorter leg is a cathode and will con-

nect to ground. When voltage is applied to the anode of the LED, and the cathode

is connected to ground, the LED emits light.

A resistor is a component that resists the flow of electrical energy (see the com-

ponents list for an explanation on the colored stripes on the side). It converts

some of the electrical energy into heat. If you put a resistor in series with a com-

ponent like an LED, the resistor will use up some of the electrical energy and the

LED will receive less energy as a result. This allows you to supply components

with the amount of energy they need. You use a resistor in series with the LED to

keep it from receiving too much voltage. Without the resistor, the LED would be

brighter for a few moments, but quickly burn out.

A switch interrupts the flow of electricity, breaking the circuit when open. When a

switch is closed, it will complete a circuit. There are many types of switches. The

ones in your kit are called momentary switches, or pushbuttons, because they are

only closed when pressure is applied.

25

YOUR FIRST
COMPONENTS

The switch
Fig. 7

-

CA
TH

OD
E

These two pins of a switch are connected
to each other

These two are not.
They form the switch

SWITCH SCHEMATIC VIEW

A - Toggle switch symbol

SWITCH CONNECTIONS

B - Pushbutton symbol

+

AN
OD

E

26
Get to Know Your Tools
Project 01

Fig. 8

BUILD THE
CIRCUIT

+ - + -

+ -+ -

Fig. 9

Your first interactive circuit, using a
switch, a resistor and an LED.
Arduino is just the power source for
this circuit; in later projects, you'll
connect its input and output pins to
control more complex circuits.

27

You’re going to use the Arduino in this project, but only as a

source of power. When plugged into a USB port or a 9-volt bat-

tery, the Arduino will provide 5 volts between its 5V pin and its

ground pin that you can use. 5V = 5 volts, you’ll see it written

this way a lot.

If your Arduino is connected to a battery or computer via USB,

unplug it before building the circuit!

Connect a red wire to the 5V pin on the Arduino, and put the

other end in one of the long bus lines in your breadboard. Con-

nect ground on the Arduino to the adjacent bus line with a black

wire. It’s helpful to keep your wire color consistent (red for pow-

er, black for ground) throughout your circuit.

Now that you have power on your board, place your switch

across the center of the board. The switch will sit across the

center in one direction. The bend in the legs of the switch point

to the center of the board.

Use a 220-ohm resistor to connect power to one side of the

switch. The illustrations in this book use 4 bands. Your kit may

have a mix of 4 and 5 band resistors. Use the illustration on the

side to check for the right one for this project. Look at page 41 for

a detailed explanation of the color codes for resistors.

On the other side of the switch, connect the anode (long leg)

of the LED. With a wire connect the cathode (short leg) of the

LED to ground. When you’re ready, plug the USB cable into the

Arduino.

Once everything is set to go, press the button. You should see

the LED light up. Congratulations, you just made a circuit! Once

you’ve tired of pressing the button to turn the light on, it’s time

to shake things up by adding a second button.

USE IT

You’ll be placing components on the breadboard in series and in
parallel. Components in series come one after another.
Components in parallel run side by side.

❶

❷

❸

❹

28
Get to Know Your Tools
Project 01

Once you’ve removed your power source add a switch next

to the one already on your breadboard. Wire them together in

series as shown in Fig. 10. Connect the anode (long leg) up the

LED to the second switch. Connect the LED cathode to ground.

Power up the Arduino again: now to turn on the LED, you need

to press both switches. Since these are in series, they both need

to be closed for the circuit to be completed.

Series circuit
COMPONENTS IN SERIES COME ONE AFTER ANOTHER

+ - + -

+ -+ -

ALWAYS REMOVE
POWER BEFORE
CHANGING ANYTHING
IN YOUR CIRCUIT

The two switches are in ser ies . This means that the same electr ical
current f lows through both of them, so that they both have to be
pressed for the LED to l ight up.
Fig. 10

Fig. 11

These two elements
are in series

29

Now that you’ve mastered the art of things in series, it’s time

to wire up switches in parallel. Keep the switches and LED

where they are, but remove the connection between the two

switches. Wire both switches to the resistor. Attach the other

end of both switches to the LED, as shown in Fig. 12. Now when

you press either button, the circuit is completed and the light

turns on.

+ - + -

+ -+ -

Parallel circuit
COMPONENTS IN PARALLEL RUN SIDE BY SIDE

These two switches are in paral le l . This means that the e lectr ical
current is spl i t between them. I f e ither switch is pressed, the LED
wi l l l ight up.
Fig. 12

Fig. 13

These two elements
are in parallel

220Ω 560Ω 4.7kΩ

5 BANDRESISTORS INCLUDED

IN THE STARTER KIT

You’ll find either a 4 band or

a 5 band version.

4 BAND

5 BAND

4 BAND

1kΩ 10kΩ 1MΩ 10MΩ

5 BAND

4 BAND

1st DIGIT

0

1

2

3

4

5

6

7

8

9

2nd DIGIT

0

1

2

3

4

5

6

7

8

9

3rd DIGIT

0

1

2

3

4

5

6

7

8

9

MULTIPLIER

0

1

2

3

4

5

6

TOLERANCE

±1%

±2%

±5% GOLD

±10% SILVER

1 = 10,000Ω = 10kΩ ±5% 0 x ±103 5

1 = 10,000Ω = 10kΩ ±5% 0 0 x ±102 5

41

HOW TO READ
RESISTOR
COLOR CODES

Resistor values are marked using colored bands, according to a code developed in the 1920s,

when it was too difficult to write numbers on such tiny objects.

Each color corresponds to a number, like you see in the table below. Each resistor has either

4 or 5 bands. In the 4-band type, the first two bands indicate the first two digits of the value

while the third one indicates the number of zeroes that follow (technically it reprents the

power of ten). The last band specifies the tolerance: in the example below, gold indicates

that the resistor value can be 10k ohm plus or minus 5%.

TE
MP

ER
AT

UR
E

SE
NS

OR

22
0

OH
M

RE
SI

ST
OR

LE
D

INGREDIENTS

03

+ - + -

+ -+ -

BUILD THE
CIRCUIT

Fig. 2

Fig. 3

In this project, you need to check the ambient temperature of the room before

proceeding. You’re checking things manually right now, but this can also be accom-

plished through calibration. It’s possible to use a button to set the baseline tempera-

ture, or to have the Arduino take a sample before starting the loop() and use that

as the reference point. Project 6 gets into details about this, or you can look at the

Calibration example that comes bundled with the Arduino software:

arduino.cc/calibration

44
Love-o-Meter
Project 03

Just as you’ve been doing in the earlier projects, wire up your

breadboard so you have power and ground.

Attach the cathode (short leg) of each of the LEDs you’re using to

ground through a 220-ohm resistor. Connect the anodes of the

LEDs to pins 2 through 4. These will be the indicators for the project.

Place the TMP36 on the breadboard with the rounded part fac-

ing away from the Arduino (the order of the pins is important!)

as shown in Fig. 2. Connect the left pin of the flat facing side to

power, and the right pin to ground. Connect the center pin to pin

A0 on your Arduino. This is analog input pin 0.

Create an interface for your sensor for people interact with. A paper cutout in the

shape of a hand is a good indicator. If you’re feeling lucky, create a set of lips for

someone to kiss, see how well that lights things up! You might also want to label

the LEDs to give them some meaning. Maybe one LED means you’re a cold fish,

two LEDs means you’re warm and friendly, and three LEDs means you’re too hot

to handle!

❶

❷

❸

❶

Cut out a piece of paper that will fit over the breadboard.
Draw a set of lips where the sensor will be, and cut some
circles for the LEDs to pass through.

❷

Place the cutout over the breadboard so that the lips cover
the sensor and the LEDs fit into the holes. Press the lips to
see how hot you are!

45

Constants are similar to variables in that they allow you to

uniquely name things in the program, but unlike variables they

cannot change. Name the analog input for easy reference, and

create another named constant to hold the baseline temperature.

For every 2 degrees above this baseline, an LED will turn on.

You’ve already seen the int datatype, used here to identify which

pin the sensor is on. The temperature is being stored as a float, or

floating-point number. This type of number has a decimal point,

and is used for numbers that can be expressed as fractions.

In the setup you’re going to use a new command, Serial.

begin(). This opens up a connection between the Arduino and

the computer, so you can see the values from the analog input

on your computer screen.

The argument 9600 is the speed at which the Arduino will

communicate, 9600 bits per second. You will use the Arduino

IDE’s serial monitor to view the information you choose to

send from your microcontroller. When you open the IDE’s serial

monitor verify that the baud rate is 9600.

Next up is a for() loop to set some pins as outputs. These are

the pins that you attached LEDs to earlier. Instead of giving them

unique names and typing out the pinMode() function for each

one, you can use a for() loop to go through them all quickly.

This is a handy trick if you have a large number of similar things

you wish to iterate through in a program. Tell the for() loop to

run through pins 2 to 4 sequentially.

In the loop(), you’ll use a local variable named sensorVal

to store the reading from your sensor. To get the value from

the sensor, you call analogRead() that takes one argument:

what pin it should take a voltage reading on. The value, which is

between 0 and 1023, is a representation of the voltage on the pin.

The function Serial.print() sends information from the

Arduino to a connected computer. You can see this information

in your serial monitor. If you give Serial.print() an

argument in quotation marks, it will print out the text you typed.

If you give it a variable as an argument, it will print out the value

of that variable.

THE CODE

A pair of useful constants

Init ia l ize the ser ia l port to
the desired speed

Initialize the digital pin
directions and turn off

Read the temperature sensor

Send the temperature sensor
values to the computer

46
Love-o-Meter
Project 03

1

2

3

4

5

6

7

8

9

const int sensorPin = A0;

const float baselineTemp = 20.0;

void setup(){

 Serial.begin(9600); // open a serial port

 for(int pinNumber = 2; pinNumber<5; pinNumber++){

 pinMode(pinNumber,OUTPUT);

 digitalWrite(pinNumber, LOW);

 }

}

void loop(){

 int sensorVal = analogRead(sensorPin);

 Serial.print(“Sensor Value: “);

 Serial.print(sensorVal);

10

11

12

13

for() loop tutorial

arduino.cc/for

47

With a little math, it’s possible to figure out what the real voltage

on the pin is. The voltage will be a value between 0 and 5 volts,

and it will have a fractional part (for example, it might be 2.5

volts), so you’ll need to store it inside a float. Create a variable

named voltage to hold this number. Divide sensorVal by

1024.0 and multiply by 5.0. The new number represents the

voltage on the pin.

Just like with the sensor value, you’ll print this out to the serial

monitor.

If you examine the sensor’s datasheet, there is information about

the range of the output voltage. Datasheets are like manuals

for electronic components. They are written by engineers, for

other engineers. The datasheet for this sensor explains that

every 10 millivolts of change from the sensor is equivalent to

a temperature change of 1 degree Celsius. It also indicates that

the sensor can read temperatures below 0 degrees. Because of

this, you’ll need to create an offset for values below freezing (0

degrees). If you take the voltage, subtract 0.5, and multiply by

100, you get the accurate temperature in degrees Celsius. Store

this new number in a floating point variable called temperature.

Now that you have the real temperature, print that out to the

serial monitor too. Since the temperature variable is the last

thing you’re going to be printing out in this loop, you’re going

to use a slightly different command: Serial.println(). This

command will create a new line in the serial monitor after it

sends the value. This helps make things easier to read in when

they are being printed out.

With the real temperature, you can set up an if()...else

statement to light the LEDs. Using the baseline temperature as

a starting point, you’ll turn on one LED on for every 2 degrees

of temperature increase above that baseline. You’re going

to be looking for a range of values as you move through the

temperature scale.

Convert the voltage to
temperature and send the
value to the computer

Convert sensor reading to
voltage

Turn off LEDs for a low
temperature

48
Love-o-Meter
Project 03

 // convert the ADC reading to voltage

 float voltage = (sensorVal/1024.0) * 5.0;

 Serial.print(“, Volts: “);

 Serial.print(voltage);

 Serial.print(“, degrees C: “);

 // convert the voltage to temperature in degrees

 float temperature = (voltage - .5) * 100;

 Serial.println(temperature);

 if(temperature < baselineTemp){

 digitalWrite(2, LOW);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

14

15

16

17

18

19

20

21

22

23

24

25

Starter Kit datasheets

arduino.cc/kitdatasheets

49

The && operator means “and”, in a logical sense. You can check

for multiple conditions: “if the temperature is 2 degrees greater

than the baseline, and it is less than 4 degrees above the baseline.”

If the temperature is between two and four degrees above the

baseline, this block of code turns on the LED on pin 3 as well.

The Analog-to-Digital Converter can only read so fast, so you

should put a small delay at the very end of your loop(). If you

read from it too frequently, your values will appear erratic.

With the code uploaded to the Arduino, click the serial monitor

icon. You should see a stream of values coming out, formatted

like this : Sensor: 200, Volts: .70, degrees C: 17

Try putting your fingers around the sensor while it is plugged into

the breadboard and see what happens to the values in the serial

monitor. Make a note of what the temperature is when the sen-

sor is left in the open air.

Close the serial monitor and change the baselineTemp constant

in your program to the value you observed the temperature to

be. Upload your code again, and try holding the sensor in your

fingers. As the temperature rises, you should see the LEDs turn

on one by one. Congratulations, hot stuff!

USE IT

Turn on one LED for a low
temperature

Turn on two LEDs for a
medium temperature

Turn on three LEDs for a
high temperature

50
Love-o-Meter
Project 03

 }else if(temperature >= baselineTemp+2 &&

 temperature < baselineTemp+4){

 digitalWrite(2, HIGH);

 digitalWrite(3, LOW);

 digitalWrite(4, LOW);

 }else if(temperature >= baselineTemp+4 &&

 temperature < baselineTemp+6){

 digitalWrite(2, HIGH);

 digitalWrite(3, HIGH);

 digitalWrite(4, LOW);

 }else if(temperature >= baselineTemp+6){

 digitalWrite(2, HIGH);

 digitalWrite(3, HIGH);

 digitalWrite(4, HIGH);

 }

 delay(1);

}

26

27

28

29

30

31

32

33

Expanding the types of inputs you can read, you’ve used
analogRead() and the serial monitor to track changes inside
your Arduino. Now it’s possible to read a large number of
analog sensors and inputs.

34

35

36

37

38

39

40

Create an interface for two people to test their compatibility with each other. You

get to decide what compatibility means, and how you’ll sense it. Perhaps they have

to hold hands and generate heat? Maybe they have to hug? What do you think?

51

MO
TO

R

SW
IT

CH

DI
OD

E
1N

40
07

MO
SF

ET

10
 K

IL
OH

M
RE

SI
ST

OR

BA
TT

ER
Y

9v
battery

INGREDIENTS

09

BA
TT

ER
Y

SN
AP

MOTORIZED
PINWHEEL
GET THE ARDUINO TO SPIN A COLORFUL PINWHEEL
USING A MOTOR

Controlling motors with an Arduino is more complicated than just controlling LEDs
for a couple of reasons. First, motors require more current than the Arduino’s out-
put pins can supply, and second, motors can generate their own current through
a process called induction, which can damage your circuit if you don’t plan for it.
However, motors make it possible to move physical things, making your projects
much more exciting. They’re worth the complications!

Moving things takes a lot of energy. Motors typically require more current than

the Arduino can provide. Some motors require a higher voltage as well. To start

moving, and when it has a heavy load attached, a motor will draw as much cur-

rent as it can. The Arduino can only provide 40 milliamps (mA) from its digital pins,

much less than what most motors require to work.

Time: 45 MINUTES
Level:

Discover: transistors, high current/voltage loads

Builds on projects: 1, 2, 3, 4

Transistors are components that allow you to control high current and high voltage

power sources from the low current output of the Arduino. There are many differ-

ent kinds, but they work on the same principle. You can think of transistors as digital

switches. When you provide voltage to one of the transistor’s pins, called the gate, it

closes the circuit between the other two pins, called the source and drain. This way,

you can turn a higher current/voltage motor on and off with your Arduino.

Motors are a type of inductive device. Induction is a process by which a changing

electrical current in a wire can generate a changing magnetic field around the wire.

When a motor is given electricity, a tightly wound coil inside the housing of copper

creates a magnetic field. This field causes the shaft (the part that sticks out of the

housing) to spin around.

95

BUILD THE
CIRCUIT

The reverse is also true: a motor can generate electricity when the shaft is spun

around. Try attaching an LED to the two leads of your motor, then spin the shaft

with your hand. If nothing happens, spin the shaft the other way. The LED should

light up. You’ve just made a tiny generator out of your motor.

When you stop supplying energy to a motor, it will continue to spin, because it

has inertia. When it’s spinning, it will generate a voltage in the opposite direction

than the current you gave it. You saw this effect when you made your motor light

up an LED. This reverse voltage, sometimes called back-voltage, can damage your

transistor. For this reason, you should put a diode in parallel with the motor, so

that the back voltage passes through the diode. The diode will only allow electric-

ity to flow in one direction, protecting the rest of the circuit.

Fig. 2

Fig. 1

96
Motorized Pinwheel
Project 09

Connect power and ground to your breadboard through the

Arduino.

Add a momentary switch to the board, connecting one side to

power, and the other side to digital pin 2 on the Arduino. Add

a 10-kilohm pull-down resistor to ground on the output pin of

the switch.

When using circuits with different voltages, you have to con-

nect their grounds together to provide a common ground. Plug

the 9V battery snap into your breadboard. Connect ground from

the battery to ground of your Arduino on the breadboard with a

jumper, as shown in Fig. 1. Then attach the motor’s free lead to

the 9V power.

Place the transistor on the board. Look at the component so that

the metal tab is facing away from you. Connect digital pin 9 to

the left pin on the transistor. This pin is called the gate. A change

in voltage on the gate makes a connection between the other

two pins. Connect one end of the motor to the middle pin of

the transistor. This pin is called the drain. When the Arduino ac-

tivates the transistor by supplying voltage to the gate, this pin

will be connected to the third pin, called the source. Connect the

source to ground.

Next, connect the motor’s voltage supply to the motor and

breadboard. The last component to be added is the diode. The

diode is a polarized component, it can go only one way in the

circuit. Notice that the diode has a stripe on one end. That end is

the negative end, or cathode, of the diode. The other end is the

positive end, or anode. Connect the anode of the diode to the

ground of the motor and the cathode of the diode to the power

of the motor. See Fig. 1. This may seem backwards, and in fact,

it is. The diode will help prevent any back-voltage generated by

the motor from going back into your circuit. Remember, back

voltage will flow in the opposite direction of the voltage that

you supply.

LEDs are diodes too, in case you were wondering why their leads were also called

anodes and cathodes. There are many kinds of diodes, but they all share one trait.

They allow current to flow from anode to cathode, but not the reverse.

❶

❷

❸

❹

❺

97

The code is remarkably similar to the code you first used for

turning on an LED. First of all, set up some constants for the

switch and motor pins and a variable named switchState to

hold the value of the switch.

In your setup(), declare the pinMode() of the motor (OUTPUT)

and switch (INPUT) pins.

Your loop() is straightforward. Check the state of the switch-

Pin with digitalRead().

If the switch is pressed, turn the motorPin HIGH. If it is not

pressed, turn the pin LOW. When HIGH, the transistor will acti-

vate, completing the motor circuit. When LOW, the motor will not

spin.

Read the input , pul l the
output high i f pressed

Declare the pins’ d irect ion

Name your constants and
var iables

THE CODE

Motors have an optimal operating voltage. They will work on as little as 50% of the

rated voltage and as much as 50% over that number. If you vary the voltage, you

can change the speed at which the motor rotates. Don’t vary it too much, though,

or you will burn out your motor.

Motors require special consideration when being controlled by a microcontroller.

Typically the microcontroller cannot provide enough current and/or voltage to

power a motor. Because of this, you use transistors to interface between the two.

It’s also smart to use diodes to prevent damaging your circuit.

98
Motorized Pinwheel
Project 09

1

2

3

4

5

6

7

8

9

const int switchPin = 2;

const int motorPin = 9;

int switchState = 0;

void setup() {

 pinMode(motorPin, OUTPUT);

 pinMode(switchPin, INPUT);

}

void loop(){

 switchState = digitalRead(switchPin);

 if (switchState == HIGH) {

 digitalWrite(motorPin, HIGH);

 }

 else {

 digitalWrite(motorPin, LOW);

 }

}

Transistors are solid state devices, they have no moving parts. Because of this, you

can switch them on and off very quickly. Try hooking up a potentiometer to an

analog input and use that to PWM the pin that controls the transistor. What do you

think will happen to the motor’s speed if you vary the voltage it’s getting? Using

your patterns on your spinner, can you get different visual effects?

10

11

12

13

14

15

16

99

